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Hypergraph p-Laplacian Regularization for
Remotely Sensed Image Recognition
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Abstract— Graph-based and manifold-regularization (MR)-
based semisupervised learning, including Laplacian regulariza-
tion (LapR) and hypergraph LapR (HLapR), have achieved
prominent performance in preserving locality and similarity
information. However, it is still a great challenge to exactly
explore and exploit the local structure of the data distribution.
In this paper, we present an efficient and effective approximation
algorithm of hypergraph p-Laplacian and then propose hyper-
graph p-LapR (HpLapR) to preserve the geometry of the proba-
bility distribution. In particular, hypergraph is a generalization of
a standard graph while hypergraph p-Laplacian is a nonlinear
generalization of the standard graph Laplacian. The proposed
HpLapR shows great potential to exploit the local structures.
We integrate HpLapR with logistic regression for remote sensing
image recognition. Experiments on UC-Merced data set demon-
strate that the proposed HpLapR has superior performance
compared with several popular MR methods including LapR
and HLapR.

Index Terms— Hypergraph, manifold learning, remote sensing,
semisupervised learning (SSL), p-Laplacian.

NOMENCLATURE

V Finite set of vertices.
w(e) Weight associated with each hyperedge e.
δ(e) Degree of a hyperedge e ∈ E , δ(e) = |e|.
Lhp Hypergraph Laplacian.
F∗hp Eigenvectors of hypergraph p-Laplacian

F∗hp = ( f ∗hp1, f ∗hp2, . . . , f ∗hpn).
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f hp Eigenvector of hypergraph p-Laplacian.
p p of p-Laplacian.
K Embedding dimension.
N Number of training images.
u Number of unlabeled images.
K Kernel function Ki j = K(xi , x j ).
� f �2

K Penalty term used to control the complexity of the
classification model.

α Coefficients.
ϒA Parameter corresponds with � f �2

K .
E Family of subsets of V ,

�
e∈E = V .

d(v) Degree of a vertex v ∈ V , d(v) = �
{e∈E | v∈e} w(e).

H h(v, e) = 1 if v ∈ e, and h(v, e) = 0 otherwise.
Lhp

p Hypergraph p-Laplacian.
λ∗hp Eigenvalue of hypergraph p-Laplacian

λ∗hp = (λ
∗hp
1 , λ

∗hp
2 , . . . , λ

∗hp
n ).

λhp Eigenvalue of hypergraph p-Laplacian.
k Number of nearest neighbors.
W hp Adjacency matrix of hypergraph.
l Number of labeled images.
Y Class labels of labeled images

Y = {yi }l
i=1, yi ∈ {±1}.

� f �2
I Appropriate penalty term corresponding to the

probability distribution.
f f = [ f (x1), f (x2), . . . , f (xl+u)]T .
ϒI Parameter corresponds with � f �2

I .
pre(r) Precision at recall r .

I. INTRODUCTION

NOWADAYS, billions of images (e.g., action images,
human face images, object images, and scene images) are

uploaded to social media platform such as YouTube, Facebook,
and Twitter. Image recognition including scene recogni-
tion [1]–[3], human face recognition [4], [5], action recogni-
tion [6]–[8], and remotely sensed image recognition [9]–[12]
has become a quite significant topic in machine vision. With
the fast development of space technologies, remotely sensed
techniques have been utilized in many applications including
targeting, environment monitoring, surveillance, and military
systems. In the remotely sensed community, it is particularly
important to effectively assign the categories of high-resolution
remotely sensed imagery data, e.g., aerial images and radar
images. Aerial scene classification [13], 14] has received
growing attention due to the drastically increasing number of
aerial images and the highly complex geometrical structures
and spatial patterns.
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However, because annotating images is costly and time
consuming, a small number of labeled samples are available
in practical applications, whereas a lot of unlabeled samples
are easy to collect. Semisupervised learning (SSL) which can
make use of labeled and unlabeled data has been investigated
to solve this problem. One successful work is manifold reg-
ularization (MR), which has attracted considerable attention
due to its rich theoretical studies [15]–[17] and its excellent
performance in multimedia data (e.g., text, image, video, and
audio) processing [18]–[24]. The main idea of MR is to
explore the geometry of the intrinsic probability distribution of
data to leverage the learning performance. Another successful
work is graph-based SSL [25], [26], which constructs a
similarity graph over data to exploit the local geometry of
labeled and unlabeled data and has achieved appealing perfor-
mance due to its flexibility and low computation complexity
in practice.

The MR framework [15] exploits the geometry of the
probability distribution of the data and incorporates it as a reg-
ularization term. Laplacian regularization (LapR) is one promi-
nent MR-based SSL algorithm, which determines the underly-
ing manifold by using the graph Laplacian. Wang et al. [27]
presented a manifold-regularized (MR) multiview subspace
clustering method to better incorporate the correlated and
complementary information from different views. The graph
Laplacian is constructed to maintain the local data manifold
of each view. Luo et al. [19] employed MR to smooth the
functions along the data manifold for multitask learning.
Jiang et al. [18] presented a mutimanifold method for recog-
nition by exploring the local geometric structure of samples.
Liu and Tao [28] proposed multiview Hessian-regularized
logistic regression which combines multiple Hessian regular-
izations to leverage the local geometry. Lu and Mou [29]
built a model of sparse-feature-selection-based MR to select
the optimal information and preserve the underlying manifold
structure of data for scene recognition.

Typically, in graph-based SSL, it is assumed that there is
a graph over the data lying on data manifolds. In the graph,
vertices represent samples and edge weights indicate the sim-
ilarity between samples. For example, Zhou et al. [30] con-
structed a directed graph learned from labeled and unlabeled
data for web categorization, in which each vertex represents
a web page, and each edge represents a hyperlink between
two web pages. For graph-based SSL, it is essential to con-
struct an effective graph over data with complex distribution.
Compared with the existing simple graph that only models the
pairwise relationship of images, hypergraph learning that uses
a hyperedge to link multiple samples can model the high-order
relationship of samples.

In [31], the hypergraph idea was first introduced to
the field of computer vision. It is a generalization of
a simple graph. Unlike a simple graph that considers the
relationship between two vertices, a set of vertices is
connected by a hyperedge in a hypergraph. Thus, the hyper-
graph contains more local grouping information than does
the simple graph. Hypergraph has been widely used in
image classification [32], [4], ranking [33], [34], and video
segmentation [35]. Sun et al. [36] constructed a hypergraph

to exploit the correlation information among different labels
for multilabel learning. Zass and Shashua [37] presented a
hypergraph-based image matching problem in a probabilis-
tic setting represented by a convex optimization problem.
Huang et al. [34] proposed a hypergraph-based transductive
algorithm to the field of image retrieval. Yu et al. [4] proposed
an adaptive hypergraph learning method for transductive image
classification.

In this paper, we propose a hypergraph p-Laplacian-
regularized (HpLapR) method for remote sensing image
recognition. The hypergraph and p-Laplacian [38], [39], [41]
both provide convincing theoretical evidences to better pre-
serve the local structure of data. However, the computation
of hypergraph p-Laplacian is a strenuous task. We provide
an effective and efficient approximation algorithm of hyper-
graph p-Laplacian. Considering the high-order relationship of
samples, the HpLapR is built for preserving local structures.
HpLapR is also introduced to logistic regression for remote
sensing image recognition. Experiments on the UC-Merced
data set [42] compare the proposed method with the popular
algorithms including LapR, hypergraph LapR (HLapR), and
p-LapR (pLapR). The contributions of this paper can be
summarized as follows.

1) We present an efficient approximation algorithm of
hypergraph p-Laplacian, significantly improving com-
putation efficiency.

2) We propose HpLapR to preserve the local similarity of
data.

3) We integrate HpLapR into logistic regression and con-
duct comprehensive experiments to empirically analyze
our method on UC-Merced data set. The experimental
results validate the effectiveness of our method.

The rest of this paper is organized as follows. Section II
briefly reviews related work on MR and hypergraph learn-
ing. Section III introduces an approximate computation of
the hypergraph p-Laplacian. Section IV proposes HpLapR.
Section V presents the HpLapR logistic regression. Section VI
provides the experimental results and analysis on UC-Merced
data set. Finally, Section VII gives the conclusion.

II. RELATED WORK

In this section, we briefly review MR and hypergraph.

A. Manifold Regularization

Assume that the estimated function is generated from the
probability distribution on samples (labeled and unlabeled
samples). The labeled samples are (x, y) pairs generated
according to probability distribution, and lie on the estimation
curve in the ideal case. The unlabeled samples are drawn
according to the marginal distribution. Based on the manifold
assumption that if two samples are close in the intrinsic
geometry, they have the similar labels. It is important to exploit
the knowledge of the marginal distribution for better function
learning.

Introducing an additional regularizer for preserving local
structures, the MR framework can be interpreted as regu-
larization algorithms that consist of different empirical cost
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functions, complexity measures in an appropriately chosen
reproducing kernel Hilbert space (RKHS) and additional infor-
mation about the geometric structure of the margins. Consider
l labeled samples and u unlabeled samples, the objective
function can be written as

f ∗ = arg min
f ∈HK

1

l

l�
i=1

V (xi , yi , f ) + ϒA� f �2
K + ϒI � f �2

I (1)

where HK is the RKHS, V is a loss function, such as the
hinge loss function max[0, 1 − yi f (xi )] for support vector
machines. There is an associated RKHS HK of functions
X → R with the corresponding norm ��k . � f �2

K is used to
control the complexity of the classification model, while � f �2

I
is an appropriate penalty term corresponding to the probability
distribution. Parameters ϒA and ϒI control the complexity of
the function in the ambient space and the intrinsic geometry,
respectively.

The classical Representer theorem states that f exists in HK

and can be written as

f ∗(x) =
l+u�
i=1

α∗
i K(xi , x) (2)

where αi is the coefficient and K is a kernel function.
Graph Laplacian has been widely used to explore and

exploit the local geometry of data distribution. As a non-
linear generalization of the standard graph Laplacian, graph
p-Laplacian has attracted attentions from the machine-learning
community. Zhou and Schölkopf [39] proposed a general
discrete regularization framework of p-Laplacian for the clas-
sification problem, and its objective function can be computed
as follows:

f ∗ = argmin
f ∈H(V )

{Sp( f ) + μ� f − y�2} (3)

where Sp( f ) := (1/2)
�

v∈V �∇v f �p is the p-Dirichlet
form of the function f , μ is a parameter balancing the two
competing terms, and y ∈ {−1, 0, 1} depends on the label of
the sample.

Bühler and Hein [38] used the graph p-Laplacian for
spectral clustering and demonstrated the relationship between
the second eigenvalue of the graph p-Laplacian and the
optimal Cheeger cut as follows:

RCC ≤ RCC∗ ≤ p
�

max
i∈V

di

� p−1
p

RCC
1
p (4)

or

NCC ≤ NCC∗ ≤ pNCC
1
p (5)

where RCC∗ and NCC∗ are the ratio/normalized Cheeger cut
values obtained by thresholding the second eigenvector of
the unnormalized/normalized p-Laplacian, di is the degree of
vertex i , and RCC and NCC are the optimal ratio/normalized
Cheeger cut values.

Luo et al. [43] used the p-Laplacian for multiclass cluster-
ing and provided an approximation of the whole eigenvectors

by solving the tractable optimization problem

min
F

JE (F) =
�

k

�
i j wi j

�� f k
i − f k

j

��p

� f k�p
p

s.t. FT F = I (6)

where wi j is the edge weight, f k is an eigenvector
of p-Laplacian, and F = ( f 1, f 2, . . . , f n) are whole
eigenvectors.

Liu et al. [6] proposed pLapR sparse coding for preserving
the manifold structure.

B. Hypergraph

In machine-learning issues, we generally assume pairwise
relationship among the object set. An object set endowed
with pairwise relationship can be considered as a graph. The
graph can be undirected or directed. However, in a number of
questions, it is not complete to represent the relations among
samples only using simple graphs. Hypergraph learning [34]
addresses this problem. Compared with traditional graph,
a hypergraph illustrates the complex relationship by hyper-
edges which connect three or more vertices (see in Fig. 1).

Let V denote a finite set of vertices and E be a fam-
ily of subsets of V such that

�
e∈E = V . A hypergraph

G = (V , E) corresponding to the vertex set V and the
hyperedge set E . Denote the weight associated with each
hyperedge e as w(e). The degree of a vertex v ∈ V is defined
by d(v) = �

{e∈E |v∈e} w(e). The degree of a hyperedge e ∈ E
is denoted by δ(e) = |e|. Denote the incident matrix H by
a |V | × |E | matrix, whose entry h(v, e) = 1 if v ∈ e, and
h(v, e) = 0 otherwise. Then

d(v) =
�
e∈E

w(e)h(v, e) (7)

δ(e) =
�
v∈V

h(v, e). (8)

Let Dv denote the diagonal matrices containing the degree
of vertex, De denote the diagonal degree matrices of each
hyperedge, and W is the diagonal matrix of edge weights.
Then, the hypergraph Laplacian can be defined.

There have been many methods for building the graph
Laplacian of hypergraphs across the literature. The first cate-
gory includes star expansion [44], clique expansion [44], and
Rodriquez’s [45] Laplacian. These methods aim to construct a
simple graph from the original hypergraph, and then partition
the vertices using spectral clustering techniques. The second
category of approaches defines a hypergraph Laplacian using
analogies from the simple graph Laplacian. Representative
methods in this category include Bolla’s [46] Laplacian and
Zhou et al.’s [47] normalized Laplacian. In [47], the normal-
ized hypergraph Laplacian is defined as

Lhp = I − Dv−1/2HWD−1
e H T Dv−1/2. (9)

Note that Lhp is the positive semidefinite. The adjacency
matrix of hypergraph can be formulated as follows:

W hp = HWH T − Dv. (10)
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Fig. 1. Block scheme of hypergraph. (Left) Simple graph in which two points are joined together by an edge if they are highly similarity. A hypergraph
completely illustrates the complex relationship among points by hyperedges. (Right) H matrix of the hypergraph. The entry (vi , e j ) is set to 1 if a hyperedge e j
contains vi , or 0 otherwise.

For a simple graph, the edge degree matrix De is replaced
by 2I . Thus, the standard graph Laplacian is

L = I − 1

2
Dv− 1

2 HWH T Dv− 1
2

= 1

2
(I − Dv−1/2W hp Dv−1/2). (11)

III. APPROXIMATION OF HYPERGRAPH p-LAPLACIAN

In this section, we introduce the approximation algorithm
of hypergraph p-Laplacian Lhp

p .
Assume that hypergraph p-Laplacian has n eigenvectors

F∗hp = ( f ∗hp1, f ∗hp2, . . . , f ∗hpn) associated with unique
eigenvalues λ∗hp = (λ

∗hp
1 , λ

∗hp
2 , . . . , λ

∗hp
n ), we compute the

approximation of Lhp
p by Lhp

p = F∗hpλ∗hpF∗hpT
. Thus, it is

important to obtain all eigenvectors and eigenvalues of hyper-
graph p-Laplacian.

Although a complete analysis of hypergraph p-Laplacian is
challenging, we can easily generate a hypergraph with a group
of hyperedges [47]. In detail, we construct hypergraph Lapla-
cian Lhp and compute adjacency matrix W hp by (8) and (9),
respectively.

Then, we introduce the basic definition of p-Laplacian �w
p

including its eigenvalue and eigenvector.
The real number λp is called an eigenvalue of �w

p , if there
exists a function f : V → R satisfying the relationship as
follows:

�
�w

p f
	

i = λpφp( fi ), i ∈ V . (12)

Function f is called a p-eigenfunction (also called eigen-
vector) associated with λp . φp is defined by φp(x) =
|x |p−1sign(x). Note that the operator �w

2 = L becomes the
regular graph Laplacian.

Following previous studies on p-Laplacian [38], eigenvalue
and the corresponding eigenvector on nonlinear operator �w

p
can be computed by the theorem.

Function Fp has a critical point at f if and only if f is an
eigenvector of �w

p . Fp is defined as

Fp( f ) =
�

i j wi j | fi − f j |p

2� f �p
p

(13)

where

� f �p
p =

�
i

| fi |p.

Here, wi j is the edge weight and the corresponding eigenvalue
λp is given by λp = Fp( f ). The above theorem serves
as the foundational analysis of eigenvectors and eigenvalues.
Moreover, Fp(α f ) = Fp( f ) applies for any real value of α.

Naturally, we can extend the above theorem to the hyper-
graph p-Laplacian as follows.

f hp is an eigenvector of hypergraph p-Laplacian, if and
only if the following function Fhp

p has a critical point
at f hp:

Fhp
p ( f hp) =

�
i j w

hp
i j

�� f hp
i − f hp

j

��p

2� f hp�p
p

(14)

where

� f hp�p
p =

�
i

�� f hp
i

��p
.

The eigenvalue λhp associated with f hp is given
by λhp = Fhp

p ( f hp).
If we want to obtain all eigenvectors and eigenvalues of

hypergraph p-Laplacian, we have to find all critical points
of function Fhp

p . Following this idea, we can obtain the full
eigenvector space by solving local solution of the following
optimization problem:

min
Fhp

J (Fhp) =
�

k

Fhp
p ( f hpk)

s.t.
�

i

φp
�

f hpk
i

	
φp

�
f hpl
i

	 = 0, k �= l (15)

where Fhp = ( f hp1, f hp2, . . . , f hpn).
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We analyze the full eigenvectors by solving the following
hypergraph p-Laplacian embedding problem instead
of (15):

min
Fhp

JE (Fhp) =
�

k

�
i j w

hp
i j

�� f hpk
i − f hpk

j

��p

� f hpk�p
p

s.t. FhpT
Fhp = I. (16)

Differentiating with respect to f hpk
i yields the following

equation:

∂ JE

∂ f hpk
i

= 1

� f hpk�p
p

⎡
⎣�

j

w
hp
i j φp

�
f hpk
i − f hpk

j

	 − φp
�

f hpk
i

	
� f hpk�p

p

⎤
⎦.

(17)

Solving problem (16) with the gradient descend optimiza-
tion, the gradient is defined in the following way:

Ghp = ∂ JE

∂Fhp − Fhp
�

∂ JE

∂Fhp

�T

Fhp. (18)

Meanwhile, the full eigenvalue λhp = (λ
hp
1 , λ

hp
2 , . . . , λ

hp
n )

can be computed by

λ
hp
k =

�
i j w

hp
i j

�� f hpk
i − f hpk

j

��p

� f hpk�p
p

. (19)

Finally, the approximation of Lhp
p can be solved by the full

eigenvectors and eigenvalues of hypergraph p-Laplacian in
this paper. We summarize the approximation of hypergraph
p-Laplacian in Algorithm 1. In the algorithm, the step length
α is set to α = 0.01((

�
ik |Fhp

ik |)/(�ik |Ghp
ik |)).

IV. HPLAPR

In SSL, we are given N training samples including l labeled
samples {(xi , yi )}l

i=1 and u unlabeled samples {(x j )}l+u
j=l+1.

Class labels are given in Y = {yi }l
i=1, where yi ∈ {±1}.

Typically, l 	 u and the goal is to predict the labels of unseen
samples.

Algorithm 1 Approximation of Hypergraph p-Laplacian
Input: Training samples X ; Embedding dimension K ; p
output: hypergraph p-Laplacian: Lhp

p

Step1: Construct hypergraph Laplacian matrix Lhp and data
adjacency matrix W hp .

Step2: Decompose graph Laplacian: Lhp = U SU T .
Initialize: Fhp = U(:, 1 : K )
Step3: While not converged do:

Ghp = ∂ JE
∂Fhp − Fhp

�
∂ JE
∂Fhp

�T
Fhp , where ∂ JE

∂Fhp is
given by Equation (16)
Fhp = Fhp − αGhp

End

Step4: λ
hp
k =

∑
i j w

hp
i j

∣∣
∣ f hpk

i − f hpk
j

∣∣
∣

p

� f hpk�p
p

return: Lhp
p = FhpλhpFhp T

According to the MR framework, the proposed HpLapR can
be written as the following optimization problem:

f ∗ = arg min
f ∈HK

1

l

l�
i=1

V (xi , yi , f ) + ϒA� f �2
K

+ ϒI

(l + u)2 fT Lhp
p f. (20)

Here, f is given as f = [ f (x1), f (x2), . . . , f (xl+u)]T , and Lhp
p

is the hypergraph p-Laplacian.
Next, to solve the optimization problem (20), we discuss

the Representer theorem of HpLapR.
Lemma 1: Suppose an arbitrary finite set of points

{x1, . . . , xn}, the kernel function K(x, y) satisfying K(x, y) =
K(y, x) is a positive semidefinite kernel, and kernel matrix K
with Kij = K(xi , x j ) is symmetric positive definite. If the
penalty term of the optimization problem (1) is a strictly
monotonically increasing real-valued function on f , the min-
imizer of the problem admits an expansion in terms of both
labeled and unlabeled samples as

f ∗(x) =
l+u�
i=1

α∗
i K(xi , x). (21)

Lemma 2: The hypergraph p-Laplacian Lhp
p is positive

semidefinite [48].
Theorem 3: The minimization of the object problem (20)

with respect to f has the representation

f ∗(x) =
l+u�
i=1

α∗
i K(xi , x). (22)

Proof: Kernel K and hypergraph p-Laplacian Lhp
p are both

positive semidefinite. Thus, the regularization term ϒA� f �2
K +

(ϒI /(l + u)2)fT Lhp
p f is a monotonically increasing real-value

function with respect to f . According to Lemma 1, the proof
of Theorem 3 is complete.

The Representer theorem demonstrates that the solution
of (20) exists and has the general form of (22).

V. HPLAPR LOGISTIC REGRESSION

The proposed HpLapR can be applied to variant applications
by integrating different choices of loss function V (xi , yi , f )
into MR framework. In this section, we apply HpLapR to
logistic regression and give its complexity analysis.

Substitute logistic loss function into (20), the HpLapR can
be rewritten as

f ∗ = arg min
f ∈HK

1

l

l�
i=1

(log(1 + e−yi f (xi ))) + ϒA� f �2
K

+ ϒI

(l + u)2 fT Lhp
p fT . (23)

According to the Representer theorem, the solution of (23)
with respect to f exists and can be expressed by (22). Thus,
we finally construct the HpLapR as the following optimization
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Fig. 2. Framework of HpLapR for remote sensing image classification.

Fig. 3. Class examples of UC-Merced data set. The data set totally has 21 remote sensing categories that can be simply grouped into six groups according
to the distinction of land use. Each column represents one group.

problem:

f ∗ = arg min
f ∈HK

1

l

l�
i=1

(log(1 + e−yi K(xi ,x)α))

+ ϒAαT Kα + ϒI

(l + u)2 αT KLhp
p Kα. (24)

To solve the optimization problem in (24), we can employ
the conjugate gradient algorithm. We take derivative of the
objective function as

∇ f (α)

= − log(e)

l

l�
i=1

�
yi

1 + eyi K(xi ,x)α
KT (xi , x)

�

+ϒA(K + KT )α + ϒI

(l+u)2

�
KLhp

p K + �
KLhp

p K
	T 	

α. (25)

The optimization procedure of conjugate gradient algorithm
for HpLapR logistic regression is described in Algorithm 2.

Suppose that we are given N samples. Denote the embed-
ding dimension as K and the number of iterations as η1 for
approximation of hypergraph p-Laplacian. The time cost for
constructing hypergraph p-Laplacian is O(η1(N2 K + nK 2)).
When K is much smaller than N , the time cost is
around O(η1 N2). Denote the number of iterations as η2
for HpLapR logistic regression and the number of candidate

Algorithm 2 HpLapR Logistic Regression

Input: l labeled samples {(xi , yi )}l
i=1,

u unlabeled samples
��

x j
	�l+u

j=l+1.
output: Estimated function: f ∗ (x) = �n

i=1 α∗
i K(xi , x).

Step1: Construct approximate Hypergraph p-Lapalcian Lhp
p .

Step2: Choose a kernel function and compute the Gram
matrix Ki j = K(xi , x j ).

Step3: Compute α∗:
Initialize: α0 ∈ RN , d0 = −∇ f (α), δ,0 < ε 	 1, m = 0
while

�� f
�
αm+1

	 − f (αm)
�� > ε

do:
αm+1 = αm + δdm

dm+1 = −∇ f
�
αm+1

	 +
∥
∥∇ f

(
αm+1)∥∥2

�∇ f (αm)�2 dm

m = m + 1
return: α∗ = αm+1

parameters that need the m-fold cross-validation as r . The time
cost for HpLapR logistic regression is O(η2r N3).

VI. EXPERIMENTS

In this section, to evaluate the effectiveness of the proposed
HpLapR, we compare HpLapR with other local structure
preserving algorithms including LapR, HLapR, and pLapR.
We apply the logistic regression for remote sensing image
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Fig. 4. Performance of mAP with different p values on validation set.

Fig. 5. mAP performance of different algorithms.

classification. Fig. 2 illustrates the framework of HpLapR for
UC-Merced data set.

UC-Merced data set [42] consists of totally 2100 land-
use images collected from aerial orthoimage with the pixel
resolution of one foot. The original images were downloaded

from the United States Geological Survey National Map
of 20 U.S. regions. These images were manually selected
into 21 classes: agricultural, airplane, baseball diamond,
beach, buildings, chaparral, dense residential, forest, freeway,
golf course, harbor, intersection, medium density residential,
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Fig. 6. AP performance of different methods on several classes.

mobile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. In this paper,
we organize these 21 classes into six groups (see Fig. 3). Note
that UC-Merced data set contains a variety of land-use classes,
which make the data set quite challenging, especially several
highly overlapped classes, e.g., sparse residential, medium
density residential, and dense residential. They mainly differ
in the density.

In our experiments, we extract high-level visual features
using the deep convolutional neural network [49]. We ran-
domly choose 50 images per class as training samples and the
rest as testing samples. For hypergraph construction, we regard
each sample in the training set as a vertex, and generate
a hyperedge for each vertex with its k nearest neighbors
(so the hyperedge connects k + 1 samples) [34]. It is worth
noting that for our experiments, the kNN-based hyperedges
generating method is implemented only in six groups, not in
the overall training samples. For example, for a sample of
baseball diamond, the vertices of the corresponding hyperedge
are chosen from the first group (baseball diamond, golf course,
and tennis courts) of Fig. 3.

In semisupervised classification experiments, we assign
10%, 20%, 30%, and 50% samples of training data as labeled
data; the rest are used as unlabeled data. The process is
repeated five times independently to avoid any bias introduced
by the random partition of data.

We conduct the experiments on the data set to obtain
the proper modal parameters. The neighborhood size k of
a hypergraph varies in a range {5, 6, 7, . . . , 15} through

Fig. 7. PR curve of different methods with 10% labeled samples.

cross-validation. Regularization parameters γA and
γI are selected from the candidate set {10i | i =
−10,−9,−8, . . . , 10} through cross-validation, and parameter
p for pLapR and HpLapR is chosen from {1, 1.1, 1.2, . . . , 3}
through cross-validation with 10% labeled samples on
the training data, respectively. We verify the classification
performance by average precision (AP) performance for
single class and mean AP (mAP) [50] for overall classes.
The AP is defined as the mean precision at a set of 11 equally
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Fig. 8. Confusion matrices of different methods with 10% labeled samples. (a) LapR. (b) HLapR. (c) pLapR. (d) HpLapR.

spaced recall levels and can be expressed as follows:

AP = 1

11

�
t

�
max
r≥t

pre(r)
�
, t ∈ {0, 0.1, 0.2, . . . , 1.0} (26)

where pre(r) is the precision at recall r . The mAP is the mean
AP over all remote sensing image classes and can be written as

mAP =
�c

i=1 APi

c
(27)

where c is the number of remote sensing image classes.
Fig. 4 illustrates the mAP performance of pLapR and

HpLapR on the validation set when p varies. The x-axis is
parameter p and the y-axis is mAP for performance measure.
We can see that the best mAP performance for pLapR can
be obtained when p = 2.3, while the best performance of
HpLapR is achieved when p is equal to 2.6.

We compare our proposed HpLapR with the representative
LapR, HLapR, and pLapR. From Fig. 5, we can observe that
HpLapR outperforms other methods especially when only a
small number of samples are labeled. This suggests that our
proposed method has the superiority to preserve the local
structure of the data because it integrates hypergraph learning
with p-Laplacian.

To evaluate the effectiveness of HpLapR for single class,
Fig. 6 shows the AP results of different methods on several
selected land-use classes including beach, dense residential,
freeway, and tennis court. From Fig. 6, we can find that in
most cases, HpLapR performs better than do both pLapR and
HLapR, while pLapR and HLapR consistently outperforms
than LapR.

Moreover, we show the precision–recall (PR) curves and the
confusion matrices of different methods with the 10% labeled
samples in Figs. 7 and 8, respectively. We can find that our

proposed HpLapR can obtain the better performance for the
most classes in comparison to other methods. We compute the
f -measure values of LapR, HLapR, pLapR, and HpLapR. The
HpLapR can get the higher f -measure value (0.695859) while
those of LapR, HLapR, and pLapR are 0.674872, 0.677027,
and 0.679709, respectively.

VII. CONCLUSION

Existing SSL algorithms have achieved great performance
in computer vision applications including classification, clus-
tering, and ranking. However, it is still challenging on how to
obtain the high-order relationship while exploiting the local
geometry of the data distribution. Therefore, after introducing
a full approximation algorithm of hypergraph p-Laplacian to
significantly low down its computation complexity, this paper
has proposed an HpLapR method to preserve the geometry
of the probability distribution. This is because hypergraph
and p-Laplacian have the advantage of preserving local struc-
tures. Furthermore, we proposed HpLapR logistic regression
for remote sensing recognition. The experimental results on
UC-Merced data set have demonstrated the effectiveness of our
proposed method in comparison to other regularized methods
including LapR, HLapR, and pLapR.
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